Discrimination of Graph Isomorphism Classes by Continuous Spectrum and Split Technique

نویسنده

  • Ameneh Farhadian
چکیده

The graph isomorphism problem is a main problem which has numerous applications in different fields. Thus, finding an efficient and easy to implement method to discriminate non-isomorphic graphs is valuable. In this paper, a new method is introduced which is very simple and easy to implement, but very efficient in discriminating non-isomorphic graphs, in practice. This method does not need any heuristic attempt and based on the eigenvalues of a new matrix representation for graphs. It, almost always, separates nonisomorphic n-vertex graphs in time O(n) and in worst cases such as strongly regular graphs, in time O(n). Here, we show that this method, successfully, characterizes the isomorphism classes of studied instances of strongly regular graphs (up to 64 vertices). Strongly regular graphs are believed to be hard cases of the graph isomorphism problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON NEW CLASSES OF MULTICONE GRAPHS DETERMINED BY THEIR SPECTRUMS

A multicone graph is defined to be join of a clique and a regular graph. A graph $ G $ is cospectral with graph $ H $ if their adjacency matrices have the same eigenvalues. A graph $ G $ is said to be determined by its spectrum or DS for short, if for any graph $ H $ with $ Spec(G)=Spec(H)$, we conclude that $ G $ is isomorphic to $ H $. In this paper, we present new classes of multicone graphs...

متن کامل

Graph Isomorphism Completeness for Perfect Graphs and Subclasses of Perfect Graphs

A problem is said to be GI-complete if it is provably as hard as graph isomorphism; that is, there is a polynomial-time Turing reduction from the graph isomorphism problem. It is known that the GI problem is GI-complete for some special graph classes including regular graphs, bipartite graphs, chordal graphs and split graphs. In this paper, we prove that deciding isomorphism of double split gra...

متن کامل

The sum-annihilating essential ideal graph of a commutative ring

Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...

متن کامل

Graph isomorphism completeness for chordal bipartite graphs and strongly chordal graphs

This paper deals with the graph isomorphism (GI) problem for two graph classes: chordal bipartite graphs and strongly chordal graphs. It is known that GI problem is GI complete even for some special graph classes including regular graphs, bipartite graphs, chordal graphs, comparability graphs, split graphs, and k-trees with unbounded k. On the other side, the relative complexity of the GI probl...

متن کامل

Fast Practical Algorithm Based on Weisfeiler-lehman Method for Graph Isomorphism

Graph isomorphism problem is to determine whether two given graphs are isomorphic. It is a particular type of a more general problem “the isomorphism of incidence system”. I propose some new invariants for heuristic search of graph isomorphism and demonstrate that they are really useful in practice by experiments. Keyword. graph isomorphism, graph invariant, graph spectrum , adjacency matrix, m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016